Что такое бутстреп (bootstrap) в контексте Data Science?
Это метод для оценки стандартных отклонений и нахождения доверительных интервалов статистических функционалов. Он основан на многократной выборке с возвращением из исходного набора данных. Так создаются «псевдовыборки».
Допустим, у нас есть выборка из неизвестного распределения: [7,2,4]. Мы хотим построить доверительный интервал для среднего.
▪️Начнём с того, что по имеющейся выборке построим много псевдовыборок. Для этого три раза подряд берём случайный элемент из выборки, допуская повторения. Повторяя эту процедуру много раз, мы получим много новых псевдовыборок такого же размера. ▪️У каждой из получившихся псевдовыборок посчитаем среднее. Так мы получим n чисел (по количеству псевдовыборок). Мы предполагаем, что каждое такое число что-то говорит нам об истинном математическом ожидании изначальной выборки. ▪️Мы упорядочиваем эти n чисел по возрастанию, и берём 0.95 интервал из середины. То есть выкидываем 2.5% самых маленьких чисел и 2.5% самых больших чисел. Из оставшихся чисел берём самое маленькое и самое большое — это будут границы нашего доверительного интервала для среднего.
Что такое бутстреп (bootstrap) в контексте Data Science?
Это метод для оценки стандартных отклонений и нахождения доверительных интервалов статистических функционалов. Он основан на многократной выборке с возвращением из исходного набора данных. Так создаются «псевдовыборки».
Допустим, у нас есть выборка из неизвестного распределения: [7,2,4]. Мы хотим построить доверительный интервал для среднего.
▪️Начнём с того, что по имеющейся выборке построим много псевдовыборок. Для этого три раза подряд берём случайный элемент из выборки, допуская повторения. Повторяя эту процедуру много раз, мы получим много новых псевдовыборок такого же размера. ▪️У каждой из получившихся псевдовыборок посчитаем среднее. Так мы получим n чисел (по количеству псевдовыборок). Мы предполагаем, что каждое такое число что-то говорит нам об истинном математическом ожидании изначальной выборки. ▪️Мы упорядочиваем эти n чисел по возрастанию, и берём 0.95 интервал из середины. То есть выкидываем 2.5% самых маленьких чисел и 2.5% самых больших чисел. Из оставшихся чисел берём самое маленькое и самое большое — это будут границы нашего доверительного интервала для среднего.
#анализ_данных #статистика
BY Библиотека собеса по Data Science | вопросы с собеседований
Warning: Undefined variable $i in /var/www/tg-me/post.php on line 283
That strategy is the acquisition of a value-priced company by a growth company. Using the growth company's higher-priced stock for the acquisition can produce outsized revenue and earnings growth. Even better is the use of cash, particularly in a growth period when financial aggressiveness is accepted and even positively viewed.he key public rationale behind this strategy is synergy - the 1+1=3 view. In many cases, synergy does occur and is valuable. However, in other cases, particularly as the strategy gains popularity, it doesn't. Joining two different organizations, workforces and cultures is a challenge. Simply putting two separate organizations together necessarily creates disruptions and conflicts that can undermine both operations.
Telegram today rolling out an update which brings with it several new features.The update also adds interactive emoji. When you send one of the select animated emoji in chat, you can now tap on it to initiate a full screen animation. The update also adds interactive emoji. When you send one of the select animated emoji in chat, you can now tap on it to initiate a full screen animation. This is then visible to you or anyone else who's also present in chat at the moment. The animations are also accompanied by vibrations. This is then visible to you or anyone else who's also present in chat at the moment. The animations are also accompanied by vibrations.
Библиотека собеса по Data Science | вопросы с собеседований from ca